Revision of concepts of symmetry and group theory (Point groups)

2011-12 (II SEM) updated Dec 2011

1. Draw a tetrahedron and determine (1) no. of edges (2) no. of faces
2. Draw a tetrahedral molecule $\left(\mathrm{AB}_{4}\right)$ and determine (1) no. of BAB angles
3. Define a point group.
4. Draw the group multiplication table for $\mathrm{C}_{2 \mathrm{v}}$ point group.
5. Draw the octahedron inscribed in a cube. Show the C_{3} axes of the cube.
6. Draw a molecule having the S_{2} symmetry element.
7. Using the $\mathrm{C}_{3 \mathrm{v}}$ point group , show that the C_{3} and $\mathrm{C}_{3}{ }^{2}$ operations belong to the same class.
8. Find the point groups of the following
(a) Fluorobenzene
(b) 1,3 - dihydroxybenzene (c) 2,4,6-trinitrophenol
9. Draw a molecule with the (a) $C_{3 h}$, (b) $D_{2 d}$ (c) $C_{5 h}$ (d) C_{i} and (e) C_{4} point group.
10. Find the transformation matrix for combined operation of inversion followed by reflection about the xy plane.
11. Find the inverse of the following matrices
(a) 100
(b) 001
(c) 010 010
100
001 001
010
100
12. Which of the following molecules will show optical activity?
(a) bromochlorofluoromethane
(b) Fluorobenzene
(c) 1,3 - dihydroxybenzene
(d) 2,4,6-trinitrophenol
(e) chloroethylmethylmethane
13. Write down the formula of the simplest amine and alkene which are optically active.
