Revision of concepts of symmetry and group theory (Point groups)

2011-12 (II SEM) updated Dec 2011

- 1. Draw a tetrahedron and determine (1) no. of edges (2) no. of faces
- 2. Draw a tetrahedral molecule (AB₄) and determine (1) no. of BAB angles
- 3. Define a point group.
- 4. Draw the group multiplication table for C_{2v} point group.
- 5. Draw the octahedron inscribed in a cube. Show the C_3 axes of the cube.
- 6. Draw a molecule having the S_2 symmetry element.
- 7. Using the C_{3v} point group, show that the C_3 and C_3^2 operations belong to the same class.
- 8. Find the point groups of the following
- (a) Fluorobenzene (b) 1,3 dihydroxybenzene (c) 2,4,6-trinitrophenol
- 9. Draw a molecule with the (a) C_{3h} , (b) D_{2d} (c) C_{5h} (d) C_i and (e) C_4 point group.
 - 10. Find the transformation matrix for combined operation of inversion followed by reflection about the xy plane.
 - 11. Find the inverse of the following matrices

(a) 1 0 0	(b)	0 0 1	(c)	0 1 0
0 1 0		$1 \ 0 \ 0$		0 0 1
0 0 1		$0 \ 1 \ 0$		$1 \ 0 \ 0$

12. Which of the following molecules will show optical activity?

(a) bromochlorofluoromethane	(b) Fluorobenzene	(c) 1,3 – dihydroxybenzene
(d) 2,4,6-trinitrophenol	(e) chloroethylmethyl	Imethane

13. Write down the formula of the simplest amine and alkene which are optically active.